3.10.62 \(\int \frac {\cos (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [962]

3.10.62.1 Optimal result
3.10.62.2 Mathematica [B] (warning: unable to verify)
3.10.62.3 Rubi [A] (verified)
3.10.62.4 Maple [B] (verified)
3.10.62.5 Fricas [F]
3.10.62.6 Sympy [F]
3.10.62.7 Maxima [F]
3.10.62.8 Giac [F]
3.10.62.9 Mupad [F(-1)]

3.10.62.1 Optimal result

Integrand size = 41, antiderivative size = 358 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} (A b+2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} (A b-2 a B) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{a d} \]

output
A*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a- 
b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/a/b/d+(A*b+2*C*a)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/ 
(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2 
)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d+(A*b-2*B*a)*cot(d*x+c)*EllipticPi( 
(a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2 
)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+A*s 
in(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d
 
3.10.62.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(853\) vs. \(2(358)=716\).

Time = 24.23 (sec) , antiderivative size = 853, normalized size of antiderivative = 2.38 \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {b+a \cos (c+d x)} (B+A \cos (c+d x)+C \sec (c+d x)) \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (a A \tan \left (\frac {1}{2} (c+d x)\right )+A b \tan \left (\frac {1}{2} (c+d x)\right )-2 a A \tan ^3\left (\frac {1}{2} (c+d x)\right )+a A \tan ^5\left (\frac {1}{2} (c+d x)\right )-A b \tan ^5\left (\frac {1}{2} (c+d x)\right )-2 A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+4 a B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+4 a B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+A (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 a (B-C) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{a d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

input
Integrate[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + 
b*Sec[c + d*x]],x]
 
output
(2*Sqrt[b + a*Cos[c + d*x]]*(B + A*Cos[c + d*x] + C*Sec[c + d*x])*Sqrt[(1 
- Tan[(c + d*x)/2]^2)^(-1)]*(a*A*Tan[(c + d*x)/2] + A*b*Tan[(c + d*x)/2] - 
 2*a*A*Tan[(c + d*x)/2]^3 + a*A*Tan[(c + d*x)/2]^5 - A*b*Tan[(c + d*x)/2]^ 
5 - 2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 
 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x 
)/2]^2)/(a + b)] + 4*a*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/ 
(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + 
 b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x 
)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sq 
rt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 4*a*B* 
EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2] 
^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan 
[(c + d*x)/2]^2)/(a + b)] + A*(a + b)*EllipticE[ArcSin[Tan[(c + d*x)/2]], 
(a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqr 
t[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*(B 
- C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c 
+ d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + 
 b*Tan[(c + d*x)/2]^2)/(a + b)]))/(a*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos 
[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(1 + Tan[(c + d 
*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]...
 
3.10.62.3 Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 363, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.268, Rules used = {3042, 4592, 27, 3042, 4546, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4592

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {\int \frac {A b \sec ^2(c+d x)-2 a C \sec (c+d x)+A b-2 a B}{2 \sqrt {a+b \sec (c+d x)}}dx}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {\int \frac {A b \sec ^2(c+d x)-2 a C \sec (c+d x)+A b-2 a B}{\sqrt {a+b \sec (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {\int \frac {A b \csc \left (c+d x+\frac {\pi }{2}\right )^2-2 a C \csc \left (c+d x+\frac {\pi }{2}\right )+A b-2 a B}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}\)

\(\Big \downarrow \) 4546

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {\int \frac {A b-2 a B+(-A b-2 a C) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+A b \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {\int \frac {A b-2 a B+(-A b-2 a C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+A b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {(A b-2 a B) \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-(2 a C+A b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+A b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {(A b-2 a B) \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(2 a C+A b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+A b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {-(2 a C+A b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+A b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (A b-2 a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{2 a}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {A b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (A b-2 a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 \sqrt {a+b} (2 a C+A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{2 a}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{a d}-\frac {-\frac {2 \sqrt {a+b} (A b-2 a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 \sqrt {a+b} (2 a C+A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}}{2 a}\)

input
Int[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[ 
c + d*x]],x]
 
output
-1/2*((-2*A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*S 
ec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a 
 + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*Sqrt[a + b]*(A* 
b + 2*a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + 
 b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + 
 Sec[c + d*x]))/(a - b))])/(b*d) - (2*Sqrt[a + b]*(A*b - 2*a*B)*Cot[c + d* 
x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a 
+ b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + 
d*x]))/(a - b))])/(a*d))/a + (A*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(a* 
d)
 

3.10.62.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4546
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A + (B - C 
)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C   Int[Csc[e + f*x]*(( 
1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A 
, B, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4592
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d 
*Csc[e + f*x])^n/(a*f*n)), x] + Simp[1/(a*d*n)   Int[(a + b*Csc[e + f*x])^m 
*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)* 
Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d 
, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
 
3.10.62.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1603\) vs. \(2(329)=658\).

Time = 6.49 (sec) , antiderivative size = 1604, normalized size of antiderivative = 4.48

method result size
default \(\text {Expression too large to display}\) \(1604\)

input
int(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,me 
thod=_RETURNVERBOSE)
 
output
-1/d/a*(A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+c 
os(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*c 
os(d*x+c)^2+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/ 
(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)) 
*b*cos(d*x+c)^2-2*A*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2 
))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+ 
c)))^(1/2)*b*cos(d*x+c)^2+4*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*( 
b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1, 
((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)* 
(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+2*C*(cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c) 
-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+2*A*(cos(d*x+c)/(1+cos(d*x 
+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot( 
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)+2*A*(cos(d*x+c)/(1+cos 
(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE( 
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)-4*A*EllipticPi(cot 
(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/ 
2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*cos(d*x+c)+8*B*(cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(...
 
3.10.62.5 Fricas [F]

\[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2 
),x, algorithm="fricas")
 
output
integral((C*cos(d*x + c)*sec(d*x + c)^2 + B*cos(d*x + c)*sec(d*x + c) + A* 
cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x)
 
3.10.62.6 Sympy [F]

\[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

input
integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1 
/2),x)
 
output
Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*cos(c + d*x)/sqrt(a + b* 
sec(c + d*x)), x)
 
3.10.62.7 Maxima [F]

\[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)/sqrt(b*sec( 
d*x + c) + a), x)
 
3.10.62.8 Giac [F]

\[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)/sqrt(b*sec( 
d*x + c) + a), x)
 
3.10.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((cos(c + d*x)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + 
d*x))^(1/2),x)
 
output
int((cos(c + d*x)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + 
d*x))^(1/2), x)